
Flexible Grayscale OLED Hookup Guide

Introduction
We’ve been hearing about and seeing flexible screens at CES for years now, but now you can finally get one in
your hands and bend a screen! You can’t fold it like paper but this flexible grayscale OLED from Wisechip can be
bent to a 40mm radius without damage. The display is less than 0.5mm thick, less than 0.5 grams, and can display
some impressive graphics with great contrast.

SparkFun Flexible Grayscale OLED Breakout - 1.81"
 LCD-14606

Product Showcase: SparkFun Flexible Grayscale OLED Breakout 1 81in

YOUR ACCOUNT

LOG IN

REGISTER

https://www.sparkfun.com/
https://www.ces.tech/
https://www.sparkfun.com/products/14606
https://www.sparkfun.com/products/14606
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14606
https://www.youtube.com/watch?v=1pMXxWJNPCg
https://www.sparkfun.com/account/login?redirect=%2Flearn%2Ftutorials%2Fflexible-grayscale-oled-hookup-guide
https://www.sparkfun.com/account/make

The OLED display is 1.81" long with 160x32 4-bit grayscale pixels. The interface is 3-wire SPI and each pixel
requires 4 bits. This means you will need a processor capable of storing a local array of 80*32 = 2,560 bytes in
order to truly flex (pun intended) the power of the grayscale display. Basic 8-bit Arduinos can communicate with
the display and do things like text but graphics will be tricky.

Required Materials

To get started, you’ll need a microcontroller to control everything in your project.

Tools

You will need a soldering iron, solder, and general soldering accessories.

SparkFun RedBoard - Programmed with
Arduino
 DEV-13975

SparkFun ESP32 Thing
 DEV-13907

Raspberry Pi 3
 DEV-13825

Particle Photon (Headers)
 WRL-13774

https://www.sparkfun.com/categories/49
https://www.sparkfun.com/products/13975
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/13907
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13825
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13825
https://www.sparkfun.com/products/13774
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13774

Suggested Reading

If you aren’t familiar with the following concepts, we recommend checking out these tutorials before continuing.

Hardware Overview
Let’s look over a few characteristics of the flexible OLED so we know a bit more about how it behaves.

Characteristic Range

Solder Lead Free - 100-gram Spool
 TOL-09325

Weller WLC100 Soldering Station
 TOL-14228

How to Solder: Through-Hole Soldering
This tutorial covers everything you need to know about
through-hole soldering.

Serial Peripheral Interface (SPI)
SPI is commonly used to connect microcontrollers to
peripherals such as sensors, shift registers, and SD
cards.

Logic Levels
Learn the difference between 3.3V and 5V devices and
logic levels.

https://www.sparkfun.com/products/9325
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9325
https://www.sparkfun.com/products/14228
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14228
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/logic-levels

Operating Voltage 3.5V - 5V

Operating Temperature -40°C - 60°C

Resolution 160 x 32

Bend Radius 40 mm

Pixel Density 88 DPI

Grayscale Resolution 4 bit

Pins

The characteristics of the available pins on the flexible OLED breakout are outlined in the table below.

Pin Label Pin Function Notes

CS Chip Select Chip Select, active low, part of SPI interface. 3.3V or 5V logic

SCLK Serial Clock Provides the clock signal for the serial interface. 3.3V or 5V logic

SDIN Master Output Data output from master. All image data is sent on this line. 3.3V or 5V logic

RES Reset Resets the display, active low. 3.3V or 5V logic

GND Ground 0V/common voltage.

VIN Power Supply Should be between 3.5V - 5V

Hardware Assembly
The flexible OLED is fairly simple to connect to your microcontroller. You can either solder headers to the OLED
breakout or solder wires straight to the breakout pins. If you’ve not soldered headers to a board, make sure to
check out our tutorial here on soldering.

Hookup Table

The onboard buffer means that you can hook the display straight up to 3.3V or 5V logic without the need for any
logic conversion circuitry. Therefore, you can just connect the pins directly to the I/O on your microcontroller.
Simply connect the pins to their assignments in the below table and we’ll be ready to go. These pins can be
changed in software later if you need to use any of them to control other parts of your project.

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/14606-SparkFun_Flexible_Grayscale_OLED_Breakout_-_1.81in.-02.jpg
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering

Flexible Grayscale OLED Breakout Board Pin Arduino Pin

VIN Should be between 3.5V - 5V

GND 0V/common voltage

RES Pin 8

SDIN Pin 11

SCLK Pin 13

CS Pin 10

Library Overview

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

First, you’ll need to download and install the Sparkfun Flexible Grayscale OLED Brekaout library. You can do
this through the Arduino library manager or manually installing it by clicking the button below.

DOWNLOAD THE SPARKFUN FLEXIBLE GRAYSCALE LIBRARY

Before we get started developing a sketch, let’s look at the available functions of the library.

void command(uint8_t c); — Sends the display a command byte.
void data(uint8_t c); — Sends the display a data byte.
void setColumnAddress(uint8_t add); — Sets the column address.
void setPageAddress(uint8_t add); — Sets the page address.

LCD Drawing Functions

void clearDisplay(uint8_t mode): — Clears the screen buffer in the OLED’s memory, pass in
mode = CLEAR_DISPLAY to clear the memory of the display, mode = CLEAR_BUFFER to clear the display

buffer, or mode = CLEAR_ALL to clear both.
void display(void); — Moves display memory to the screen to draw the image in memory.
void setCursor(uint8_t x, uint8_t y); — Set cursor position to (x, y).
void invert(boolean inv); — Turns every black pixel white, turns all white pixels black.
void setContrast(uint8_t contrast); — Changes the contrast value anywhere between 0 and 255.
void flipVertical(boolean flip); — Does a vertical mirror of the screen.
void flipHorizontal(boolean flip); — Does a horiontal mirror of the screen.

void setPixel(uint8_t x, uint8_t y); — Draw a pixel using the current fore color and current draw
mode in the screen buffer’s x,y position.

void setPixel(uint8_t x, uint8_t y, uint8_t color, uint8_t mode); — Draw a pixel with NORM or
XOR draw mode in the screen buffer’s x,y position.

https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/sparkfun/SparkFun_SSD1320_OLED_Arduino_Library/archive/master.zip

void line(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1); — Draw line using current fore color and
current draw mode from x0,y0 to x1,y1 of the screen buffer.

void line(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1, uint8_t color, uint8_t mode); — Draw
line using color and mode from x0,y0 to x1,y1 of the screen buffer.
void lineH(uint8_t x, uint8_t y, uint8_t width); — Draw horizontal line using current fore color and

current draw mode from x,y to x+width,y of the screen buffer.
void lineH(uint8_t x, uint8_t y, uint8_t width, uint8_t color, uint8_t mode); — Draw horizontal

line using color and mode from x,y to x+width,y of the screen buffer.
void lineV(uint8_t x, uint8_t y, uint8_t height); — Draw vertical line using current fore color and

current draw mode from x,y to x,y+height of the screen buffer.
void lineV(uint8_t x, uint8_t y, uint8_t height, uint8_t color, uint8_t mode); — Draw vertical

line using color and mode from x,y to x,y+height of the screen buffer.

void rect(uint8_t x, uint8_t y, uint8_t width, uint8_t height); — Draw rectangle using current
fore color and current draw mode from x,y to x+width,y+height of the screen buffer.

void rect(uint8_t x, uint8_t y, uint8_t width, uint8_t height, uint8_t color , uint8_t mode);

—Draw rectangle using color and mode from x,y to x+width,y+height of the screen buffer.
void rectFill(uint8_t x, uint8_t y, uint8_t width, uint8_t height); — Draw filled rectangle using

current fore color and current draw mode from x,y to x+width,y+height of the screen buffer.
void rectFill(uint8_t x, uint8_t y, uint8_t width, uint8_t height, uint8_t color , uint8_t mode);

— Draw filled rectangle using color and mode from x,y to x+width,y+height of the screen buffer.

void circle(uint8_t x, uint8_t y, uint8_t radius); — Draw circle with radius using current fore color
and current draw mode with center at x,y of the screen buffer.

void circle(uint8_t x, uint8_t y, uint8_t radius, uint8_t color, uint8_t mode); — Draw circle
with radius using color and mode with center at x,y of the screen buffer.
void circleFill(uint8_t x0, uint8_t y0, uint8_t radius); — Draw filled circle with radius using

current fore color and current draw mode with center at x,y of the screen buffer.
void circleFill(uint8_t x0, uint8_t y0, uint8_t radius, uint8_t color, uint8_t mode); — Draw

filled circle with radius using color and mode with center at x,y of the screen buffer.

void drawChar(uint8_t x, uint8_t y, uint8_t c); — Draws a character at position (x, y).

void drawChar(uint8_t x, uint8_t y, uint8_t c, uint8_t color, uint8_t mode); — Draws a character
using a color and mode at position (x, y)

void drawBitmap(uint8_t * bitArray); — Draws a preloaded bitmap.

uint16_t getDisplayWidth(void); — Gets the width of the OLED.
uint16_t getDisplayHeight(void); — Gets the height of the OLED.
void setDisplayWidth(uint16_t); — Sets the width of the OLED.
void setDisplayHeight(uint16_t); — Sets the height of the OLED.
void setColor(uint8_t color); — Sets the color of the OLED
void setDrawMode(uint8_t mode); — Sets the drawing mode of the OLED
uint8_t *getScreenBuffer(void); —

Font Settings

uint8_t getFontWidth(void); — Gets the current font width as a byte.
uint8_t getFontHeight(void); — Gets the current font height as a byte.

uint8_t getTotalFonts(void); — Return the total number of fonts loaded into the MicroOLED’s flash
memory.
uint8_t getFontType(void); — Returns the font type number of the current font (Font types shown

below).
boolean setFontType(uint8_t type); — Sets the font type (Font types shown below).

Font
Type

Maximum
Columns

Maximum
Rows

Description

0 10 6 Smallest, 5x7-pixel characters.

1 6 3 Medium, 8x16-pixel characters.

2 5 3 7-segment display style characters, 10x16-pixels
each.

3 5 1 Large, 12x48 (the entire screen height) characters.

uint8_t getFontStartChar(void); — Returns the starting ASCII character of the current font.

uint8_t getFontTotalChar(void); — Return the total characters of the current font.

Rotation and Scrolling

The following functions will scroll the screen in the various specified directions of each function. Start and stop
indicate the range of rows/columns that will be scrolling.

void scrollRight(uint8_t start, uint8_t stop);

void scrollLeft(uint8_t start, uint8_t stop);

void scrollUp(uint8_t start, uint8_t stop);

void scrollStop(void);

Example Code
Now that we have our library installed, we can get started playing around with our examples to learn more about
how the screen behaves.

Example 1 - Text

To get started, open up Example1_Text under File > Examples > SparkFun Flexible Grayscale OLED
Breakout > Example1_Text. Upon opening this example, you’ll notice that our void loop() is empty. This is
because we only need to draw the image to our OLED one time in order for it to stay there. We first initialize our
screen with CS connected to pin 10 and RES connected to pin 9, with the line SSD1320 flexibleOLED(10, 9); .
Then in our setup loop we use flexibleOLED.begin(160, 32); to begin a display that is 160x32 pixels. We then
use the following lines to first clear the display, set the font, the location where we’d like to type, and the text we’d
like to type. The final line tells the display to show what we’ve just written to the display buffer.

flexibleOLED.clearDisplay(); //Clear display and buffer

flexibleOLED.setFontType(1); //Large font
flexibleOLED.setCursor(28, 12);
flexibleOLED.print("Hello World!");

flexibleOLED.setFontType(0); //Small font
flexibleOLED.setCursor(52, 0);
flexibleOLED.print("8:45:03 AM");

flexibleOLED.display();

This will write the text to the display when our microcontroller runs the setup loop and leave it there, the output
should look something like the below image.

Example 2 - Graphics

To get started, open up Example2_Graphics under File > Examples > SparkFun Flexible Grayscale OLED
Breakout > Example2_Graphics. This example will draw a grayscale image from pre-converted image data, in
this case, an image of a macaque. In order to convert your own images to a format readable by the OLED, check
out this neat Python script for converting Bitmaps to arrays for the grayscale OLED. First you’ll need a *.bmp file
that is 160 pixels wide and 32 pixels tall. Once you have your *.bmp, generating an image array is as simple as
running the python script from the command line like below. (Make sure you put in the proper file paths)

python <path to bmptoarray.py> <pathway to image.bmp>

The output will be placed in the output.txt file in the same directory as bmptoarray.py, and will look something like
the below image.

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/Flexible_Grayscale_OLED_Breakout_Photos-01.jpg
https://github.com/sparkfun/BMPtoArray

This large array must then be copied into a *.h file in the same folder as your sketch. Go ahead and name it
something memorable, my sketch folder looks like this, with my array sitting in the TestImage.h file

Then, in our sketch, we’ll need to make sure we include the file containing this array, so make sure to put an
#include "TestImage.h" at the top of your sketch. Also make sure you comment out any other image files that

may be included. If you haven’t gone ahead and replaced the macaque with your own image, the output should
look like the below image, otherwise, it should obviously look like whatever image you’ve chosen to display on
your OLED.

Example 3 - Lines

To get started, open up Example3_Lines under File > Examples > SparkFun Flexible Grayscale OLED
Breakout > Example3_Lines. This example draws a few shapes on the display. Once again, it simply writes the
image to the display and leaves it there. Play around with the parameters that draw each rectangle and circle to
determine how this affects their positioning and size. The stock example code should look something like the
below image.

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/Text.PNG
https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/sketch.PNG
https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/Flexible_Grayscale_OLED_Breakout_Photos-02.jpg

Example 4 - BMP Eater

In this example, we’ll feed bitmaps directly into the screen using a serial terminal like Tera Term. If you’re not too
familiar with using a terminal, check out our overview of serial terminal basics and download Tera Term. This is
useful because we don’t have to convert our bitmaps into a prog_mem or anything. To get started we’ll first have to
make sure our microcontroller can properly parse the serial input into pixel data. Go ahead and open up
Example4_BMP_Eater under File > Examples > SparkFun Flexible Grayscale OLED Breakout >
Example4_BMP_Eater. Once you have this open and uploaded, check out the getBitmap() function, which
checks the structure of what we’re sending over serial and then writes it to the screen. Now that our
microcontroller is ready for data, it’s time to open up Tera Term and start sending data. A new instance of Tera
Term should prompt you to enter the COM port. Be sure to enter the port that your microcontroller is on.

Once we’ve done this, we’ll need to change the baud rate of our terminal to match the microcontroller’s baud of
57600. Do this by going to Setup > Serial Port… and select 57600 from the drop-down menu. Now that we’ve
opened a connection to the OLED we can start sending images to it. To do this, all we need to do is go to File >
Send File… and select the bitmap we want to send to our screen. Go to Documents > Arduino > Libraries >
SparkFun_Flexible_Grayscale_OLED_Breakout > Examples > Example4_BMP_Eater. This folder should
contain a few bitmaps. If you got fancy and created your own bitmap in the second example, you can load that up
as well. Select your file, make sure you’re sending it in a binary format (the image below shows the binary box
checked).

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/Flexible_Grayscale_OLED_Breakout_Photos-03.jpg
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://learn.sparkfun.com/tutorials/terminal-basics
https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/com.PNG

Uploading the image should show the display refresh line by line as it gets new data to chew on. The process
looks something like the below GIF.

Example 5 - All The Text

To get started, open up Example5_AllTheText under File > Examples > SparkFun Flexible Grayscale OLED
Breakout > Example5_AllTheText. This example displays all of the text capabilities of the OLED. Take a look at
the text example functions below to see how each one writes the corresponding text.

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/binary.PNG
https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/unnamed__2_.gif

void smallTextExample()
{
 printTitle("Small text", 0);

 flexibleOLED.setFontType(0); //Small text

 byte thisFontHeight = flexibleOLED.getFontHeight();

 flexibleOLED.clearDisplay(); //Clear display RAM and local display buffer
 flexibleOLED.setCursor(0, thisFontHeight * 3);
 flexibleOLED.print("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
 flexibleOLED.setCursor(0, thisFontHeight * 2);
 flexibleOLED.print("abcdefghijklmnopqrstuvwxyz");
 flexibleOLED.setCursor(0, thisFontHeight * 1);
 flexibleOLED.print("1234567890!@#$%^&*(),.<>/?");
 flexibleOLED.setCursor(0, thisFontHeight * 0);
 flexibleOLED.print(";:'\"[]{}-=_+|\\~`");

 flexibleOLED.display();

 delay(2000);
}

Changing the type of text is simply a matter of using the setFontType() and changing the font used by the
screen. Also notice how we must use different cursor positions for our lines of text to prevent them from
overlapping each other.

void largeTextExample()
{
 printTitle("Large text", 0);

 flexibleOLED.setFontType(1); //Larger text
 byte theDisplayHeight = flexibleOLED.getDisplayHeight();
 byte thisFontHeight = flexibleOLED.getFontHeight();

 flexibleOLED.clearDisplay(); //Clear display RAM and local display buffer

 flexibleOLED.setCursor(0, theDisplayHeight - (thisFontHeight * 1));
 flexibleOLED.print("ABCDEFGHIJKLMNOPQ");
 flexibleOLED.setCursor(0, theDisplayHeight - (thisFontHeight * 2));
 flexibleOLED.print("abcdefghij1234567");

 flexibleOLED.display();

 delay(2000);
}

Uploading this example should yield an output on your screen similar to the one shown in the image below.

Example 6 - Pong

This next example will play us a nice little game of fake pong. To get started, open up Example6_Pong under File
> Examples > SparkFun Flexible Grayscale OLED Breakout > Example6_Pong. The meat and potatoes of this
pong example is contained in the shapeExample() function, shown below.

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/unnamed__1_.gif

void shapeExample()
{
 printTitle("Shapes!", 0);

 // Silly pong demo. It takes a lot of work to fake pong...
 int paddleW = 3; // Paddle width
 int paddleH = 15; // Paddle height
 // Paddle 0 (left) position coordinates
 int paddle0_Y = (flexibleOLED.getDisplayHeight() / 2) - (paddleH / 2);
 int paddle0_X = 2;
 // Paddle 1 (right) position coordinates
 int paddle1_Y = (flexibleOLED.getDisplayHeight() / 2) - (paddleH / 2);
 int paddle1_X = flexibleOLED.getDisplayWidth() - 3 - paddleW;
 int ball_rad = 2; // Ball radius
 // Ball position coordinates
 int ball_X = paddle0_X + paddleW + ball_rad;
 int ball_Y = random(1 + ball_rad, flexibleOLED.getDisplayHeight() - ball_rad);//paddle0_Y + ba
ll_rad;
 int ballVelocityX = 1; // Ball left/right velocity
 int ballVelocityY = 1; // Ball up/down velocity
 int paddle0Velocity = -1; // Paddle 0 velocity
 int paddle1Velocity = 1; // Paddle 1 velocity

 //while(ball_X >= paddle0_X + paddleW - 1)
 while ((ball_X - ball_rad > 1) &&
 (ball_X + ball_rad < flexibleOLED.getDisplayWidth() - 2))
 {
 // Increment ball's position
 ball_X += ballVelocityX;
 ball_Y += ballVelocityY;
 // Check if the ball is colliding with the left paddle
 if (ball_X - ball_rad < paddle0_X + paddleW)
 {
 // Check if ball is within paddle's height
 if ((ball_Y > paddle0_Y) && (ball_Y < paddle0_Y + paddleH))
 {
 ball_X++; // Move ball over one to the right
 ballVelocityX = -ballVelocityX; // Change velocity
 }
 }
 // Check if the ball hit the right paddle
 if (ball_X + ball_rad > paddle1_X)
 {
 // Check if ball is within paddle's height
 if ((ball_Y > paddle1_Y) && (ball_Y < paddle1_Y + paddleH))
 {
 ball_X--; // Move ball over one to the left
 ballVelocityX = -ballVelocityX; // change velocity
 }
 }
 // Check if the ball hit the top or bottom
 if ((ball_Y <= ball_rad) || (ball_Y >= (flexibleOLED.getDisplayHeight() - ball_rad - 1)))
 {

 // Change up/down velocity direction
 ballVelocityY = -ballVelocityY;
 }
 // Move the paddles up and down
 paddle0_Y += paddle0Velocity;
 paddle1_Y += paddle1Velocity;
 // Change paddle 0's direction if it hit top/bottom
 if ((paddle0_Y <= 1) || (paddle0_Y > flexibleOLED.getDisplayHeight() - 2 - paddleH))
 {
 paddle0Velocity = -paddle0Velocity;
 }
 // Change paddle 1's direction if it hit top/bottom
 if ((paddle1_Y <= 1) || (paddle1_Y > flexibleOLED.getDisplayHeight() - 2 - paddleH))
 {
 paddle1Velocity = -paddle1Velocity;
 }

 // Draw the Pong Field
 flexibleOLED.clearDisplay(CLEAR_BUFFER); //Save time. Only clear the local buffer.
 // Draw an outline of the screen:
 flexibleOLED.rect(0, 0, flexibleOLED.getDisplayWidth() - 1, flexibleOLED.getDisplayHeight
());
 // Draw the center line
 flexibleOLED.rectFill(flexibleOLED.getDisplayWidth() / 2 - 1, 0, 2, flexibleOLED.getDisplayH
eight());
 // Draw the Paddles:
 flexibleOLED.rectFill(paddle0_X, paddle0_Y, paddleW, paddleH);
 flexibleOLED.rectFill(paddle1_X, paddle1_Y, paddleW, paddleH);
 // Draw the ball:
 flexibleOLED.circle(ball_X, ball_Y, ball_rad);
 // Actually draw everything on the screen:
 flexibleOLED.display();

 //delay(25); // Delay for visibility
 }

 delay(1000);
}

Most of this function is simply math to move the paddles and ball around the screen and check for collisions. The
actual drawing of the objects is executed in the last few lines of the function, right before the
flexibleOLED.display(): function. The shapeExample() function is called repeatedly in our void loop() to

progress the positions of the Pong pieces. The OLED should look something like the below GIF with this code
uploaded.

Example 7 - Logo

To get started, open up Example7_Logo under File > Examples > SparkFun Flexible Grayscale OLED
Breakout > Example7_Logo. This example simply shows us how to display what was already in the OLED’s
buffer. All we have to do is initialize the screen without clearing the buffer, give the flexibleOLED.display()
command, and the OLED will show the SparkFun logo. It’ll look similar to the image below.

Example 8 - Noise Drawing

To get started, open up Example8_NoiseDrawing under File > Examples > SparkFun Flexible Grayscale
OLED Breakout > Example8_NoiseDrawing. This example writes noise directly to the display and also to the
buffer. However, the buffer is incapable of grayscale so we will only get black and white noise when calling the
writeToBuffer() function. We can see upon closer inspection that each of these functions writes noise from the
A0 and A1 pins, so make sure these aren’t connected to anything. The output will look something like the below

image. Notice how the noise from the buffer is only in black and white.

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/unnamed__3_.gif
https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/Flexible_Grayscale_OLED_Breakout_Photos-04.jpg

Resources and Going Further
Now that you’ve successfully got your flexible grayscale OLED display up and running, it’s time to incorporate it
into your own project!

For more information, check out the resources below:

Schematic (PDF)
Eagle Files (ZIP)
Flexible Grayscale OLED Display Datasheet
SSD1320 Command Set
SSD1320 Protocol Datasheet
GitHub

Product Repo - Hardware design files
Arduino Library - Library and example code.
BMP to Array - Python script to convert bitmaps to an Arduino prog_mem array when outputting
grayscale images to OLEDs.

SFE Product Showcase: SparkFun Flexible Grayscale OLED Breakout

Need some inspiration for your next project? Check out some of these related tutorials:

OLED Display Hookup Guide
A simple hookup guide to get you started with the
OLED LCD.

Serial Graphic LCD Hookup
Learn how to use the Serial Graphic LCD.

New!

https://cdn.sparkfun.com/assets/learn_tutorials/7/5/8/unnamed.gif
https://learn.sparkfun.com/tutorials/flexible-grayscale-oled-hookup-guide?_ga=2.234685725.2002472081.1528131766-1018459942.1513696581&_gac=1.140099847.1525097009.EAIaIQobChMI-ZqliZXi2gIVg8DACh1kpAayEAAYASAAEgLhWfD_BwE
https://learn.sparkfun.com/tutorials/flexible-grayscale-oled-hookup-guide?_ga=2.234685725.2002472081.1528131766-1018459942.1513696581&_gac=1.140099847.1525097009.EAIaIQobChMI-ZqliZXi2gIVg8DACh1kpAayEAAYASAAEgLhWfD_BwE
https://cdn.sparkfun.com/assets/6/9/9/9/3/SAS1-12003-B_UG-6032CSWBGA1.pdf
https://cdn.sparkfun.com/assets/6/c/8/5/2/SSD1320_1.1_APPENDIX__to_Wisechip_.pdf
https://cdn.sparkfun.com/assets/d/b/1/f/d/SSD1320_1.0__to_Wisechip_.pdf
https://github.com/sparkfun/Flexible_Grayscale_OLED
https://github.com/sparkfun/SparkFun_SSD1320_OLED_Arduino_Library
https://github.com/sparkfun/BMPtoArray
https://youtu.be/1pMXxWJNPCg
https://learn.sparkfun.com/tutorials/oled-display-hookup-guide
https://learn.sparkfun.com/tutorials/serial-graphic-lcd-hookup
https://learn.sparkfun.com/tutorials/teensyview-hookup-guide
https://learn.sparkfun.com/tutorials/pic-based-serial-enabled-character-lcd-hookup-guide

TeensyView Hookup Guide
A guide to using the TeensyView OLED board to
display text and graphics.

PIC-Based Serial Enabled Character LCD
Hookup Guide
The PIC-based serial enabled character LCD backpack
is a simple and cost effective solution for interfacing to
character Liquid Crystal Displays (LCDs) based on the
HD44780 controller. The backpack simplifies the
number of wires needed and allows your project to
display all kinds of text and numbers.

https://learn.sparkfun.com/tutorials/teensyview-hookup-guide
https://learn.sparkfun.com/tutorials/pic-based-serial-enabled-character-lcd-hookup-guide

